
 360 

CLASS OF INHOMOGENEOUSLY DRIVEN 
DYNAMICAL SYSTEMS: GENERAL THEORY, 

REGULAR AND CHAOTIC PROPERTIES 
 

                  Vladimir Damgov, Nikolay Erokhin * and Plamen Trenchev 
 

Space Research Institute at the Bulgarian Academy of Sciences, 
Sofia, Bulgaria 

* Space Research Institute at the Russian Academy of Sciences, 
Moscow, Russia 

  
Abstract:  
A generalized model of an oscillator, subjected to the influence of an external 

wave is considered. It is shown that the systems of diverse physical background 
which this model encompasses by their nature should belong to the broader class 
of "kick-excited self-adaptive dynamical systems". 
 
 INTRODUCTION 
 The main goal of this report is to present a phenomenon of highly 
general nature manifested in various dynamical systems. We present the 
occurrence of peculiar “quantization” by the parameter of intensity of the 
excited oscillations (See the References below [1-9]). Quantization (the idea 
of quantums, photons, phonons, gravitons) is postulated in Quantum 
Mechanics, while Theory of Relativity does not derive quantization from 
geometric considerations. In the case of the established phenomenon the 
"quantized nature" of portioned energy transfer stems directly from the 
mechanisms of the process and has a precise mathematical description. 

Here we also consider the generalized “oscillator-wave” model [10] and 
show that, in this case, the inhomogeneous external influence is realized 
naturally and does not require any specific conditions. 
 
1. A NUMERIC DEMONSTRATION OF THE EXCITATION OF 

“QUANTIZED” PENDULUM OSCILLATIONS 
The inhomogeneously AC driven, damped pendulum system can be 

described by the following equation: 

 vtFxx
dt
dx

dt
xd

o sin)(sin22
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where the function )(xε  can be analytically expressed in various ways, such 
as: 
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ε  and so on; 1'<<d  

is a parameter limiting the external action on a small part of the trajectory of 
motion in the system (in the particular case(2) the parameter 'd  thereby 
determines a symmetric zone of action in the area of the lower equilibrium 
position). 

Results from the computer experiment are presented in [1,2].  
 
2. ANALYTICAL PROOF OF EXISTENCE OF KICK-PENDULUM 

“QUANTIZED” OSCILLATIONS 
The analytic approach for the cases of small and large amplitudes of 

pendulum oscillation is given in [1,2,3,4,5,6,7,8,9]. 
The spectrum of the symmetrical solution amplitudes can be expressed 

as  [2,7]: 
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complete normal elliptic integral of first kind.  
A phenomenon of rotation excitation with strictly determined discrete 

set of possible rates is presented. The model considered is that of a 
pendulum rotator under inhomogeneous action [1,2].   

General conditions for pendulum oscillation excitation under the action 
of external nonlinear force has been derived [1,2,9].An analytical approach 
for large amplitudes of pendulum oscillation (strong nonlinearity) has been 
also demonstrated [1,2,5,6,7]. 

 
3. MODEL OF THE INTERACTION OF AN OSCILLATOR WITH 

AN FALLING WAVE 
 Analytical approaches applicable for small and large amplitudes (for 

weak and strong nonlinearity) of the oscillations in a nonlinear dynamic 
system subjected to the influence of a wave has been developed [1,10]. 
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The performed analysis shows that the continuous wave having a 
frequency much larger than the frequency of a given oscillator can excite in 
it oscillations with a frequency close to its natural frequency and an 
amplitude belonging to a discrete set of possible stable amplitudes. 
 
4. “QUANTIZED” CYCLOTRON MOTION 

An electric charge, moving on a circular orbit in a homogeneous 
permanent magnetic field has been considered. When the charge was 
irradiated by a flat electromagnetic wave having a length commensurable 
with the orbit’s radius, an effect of discretization (“quantization”) of the 
possible stable orbital radii (or motion velocities) was observed (See [1,10]). 
 
5. THE WAVE NATURE AND DYNAMICAL QUANTIZATION OF 

THE SOLAR SYSTEM 
The Solar system planets mean distances are presented (See [1,10]). For 

comparison reasons, the direct astronomic measurements data is given 
parallel to the result, computed by the classical Titius-Bode law (11) and an 
Equation according to the “oscillator-wave” model, described above. A 
good correspondence is observed between the computed and astronomically 
measured radii. Especially significant is the correspondence between the 
computed and measured radii of Neptune and Pluto. The Titius-Bode law 
determines the mean distances of those two planets with an error of 23% and 
49%, respectively. 

The computed data of the mean satellite distances from Saturn, Uranus 
and Jupiter, as well as the mean ring system distances from Saturn, are also 
presented (See [1,10]). The calculations are made on the basis of the 
“oscillator-wave” model. Again, a good correspondence is seen between the 
calculated and measured mean distances [1,10]. 

Assumption that the Solar system is e a wave dynamic system and 
hence, the micro-mega-analogy (MM-analogy) is valid [11], is the essence 
and grounds for the presented consideration.] 
 
6. GENERAL CONDITIONS FOR TRANSITION TO IRREGULAR 

BEHAVIOUR IN AN OSCILLATOR UNDER WAVE ACTION 
General conditions for transition to irregular and chaotic behaviour in an 

oscillator under wave action have been derived using the notion about the 
Melnikov distance [1,10]. 
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7. GENERAL CHARACTERISTIC FEATURES OF THE CLASS OF 
KICK-EXCITED SELF-ADAPTIVE DYNAMICAL SYSTEMS.  
CONCLUSIONS 
The main characteristics and regularities, characterizing the considered 

class of kick-excited self-adaptive dynamical systems are as follows: 
 1. The excitation of oscillations with a quasi-natural system frequency 

and numerous discrete stationary amplitudes, depending only on the initial 
conditions. 

2. Adaptive self-control of the energy contribution in the oscillating 
process. 

Regardless of its simplicity, the “oscillator-wave” model obviously 
reflects a number of processes in the micro- and macro-world. 

On the basis of the presented oscillator-wave model it is also possible to 
create heuristic models of the interaction of electromagnetic waves with 
plasma particles in the Earth’s ionosphere and magnetosphere, heuristic 
models of the generation of powerful low-frequency waves in the space 
around the Earth when a cosmic electromagnetic background is present etc. 
High-efficient sub-millimeter emitter, built on this basis, could be suitable 
for radio-physical heating of plasma, e.g. in the experiments aimed the 
achievement of controllable thermonuclear reaction [1]. 

The method developed of entering energy in oscillation processes and 
the excitation of “quantized” oscillations in dynamic macro-systems finds 
and will find in the future applications which could be grouped in the 
following way:  

1. Transformation of signals and oscillations of different nature by 
frequency with a high efficiency at single division of the frequency by ratio 
of tens, hundreds and thousands. 

2. Energy transformation of one kind into another, for example of 
electric into mechanical and vice-versa. 

3. Stabilization of different parameters with their change in a wide range 
(e.g. 50-100-300%). 

4. The development of new base elements for specialized calculating 
devices possessing a large number of stable discrete states. 

5. Intensification of different processes through a special organization of 
interaction of different oscillation or development of different wave 
technologies. 

6. The modelling of micro- and macro- processes with the methods of 
classic oscillation theory.  
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